Aleksandr Pasechnik November 1, 2011

1 Problem

Calculate a rough estimate of the Mean Effective Pressure (MEP) of an ideal expanding steam cycle.

2 Definitions

2.1 Constants

• P_b : back pressure (PSIa)

• P_i : input pressure (PSIa)

• V_t : total displacement volume (in³)

• V_i : volume at steam cutoff (in³)

• R_e : ratio of expansion (dimensionless)

 \bullet a: expansion constant

2.2 Functions

• P_m : mean effective pressure (PSIa)

• P_1 : pressure during input (PSIa)

• P_2 : pressure during expansion (PSIa)

3 Solution

The pressure during input is assumed to be constant:

$$P_1 = P_i \tag{1}$$

The total and cutoff volumes are related to eachother by the ratio of expantion:

$$R_e = \frac{V_t}{V_i}$$

$$V_i = \frac{V_t}{R_e}$$
(2)

The relation of pressure and volume during expansion can be idealized by the following equation:

$$PV = a$$

$$a = P_i V_i$$
(3)

since we know the pressure and volume at the point of cutoff. This leads to the following formulation of the pressure during expansion:

$$P_{2}V = a$$

$$P_{2}V = P_{i}V_{i}$$

$$P_{2} = \frac{P_{i}V_{i}}{V}$$

$$(4)$$

The MEP is equal to the area within the PV diagram, divided by the total volume that it spans:

$$P_{m} = \frac{\int_{0}^{V_{t}} \{P_{1}, P_{2}\} - P_{b} dV}{V_{t}}$$

$$P_{m} = \frac{\int_{0}^{V_{t}} P_{1} dV + \int_{V_{t}}^{V_{t}} P_{2} dV - \int_{0}^{V_{t}} P_{b} dV}{V_{t}}$$

$$P_{m} = \frac{\int_{0}^{V_{t}} P_{i} dV + \int_{V_{t}}^{V_{t}} \frac{P_{i} V_{i}}{V} dV - \int_{0}^{V_{t}} P_{b} dV}{V_{t}}$$

$$P_{m} = \frac{P_{i} \int_{0}^{V_{i}} dV + P_{i} V_{i} \int_{V_{i}}^{V_{t}} \frac{1}{V} dV - P_{b} \int_{0}^{V_{t}} dV}{V_{t}}$$

$$P_{m} = \frac{P_{i} V_{i} + P_{i} V_{i} [ln V_{t} - ln V_{i}] - P_{b} V_{t}}{V_{t}}$$

$$P_{m} = \frac{P_{i} V_{i} [1 + ln V_{t} - ln V_{i}] - P_{b} V_{t}}{V_{t}}$$

$$P_{m} = P_{i} \frac{V_{i}}{V_{t}} [1 + ln \frac{V_{t}}{V_{i}}] - P_{b} \frac{V_{t}}{V_{t}}$$

$$(1) P_{m} = P_{i} \frac{1 + ln R_{e}}{R_{e}} - P_{b}$$

$$(6)$$